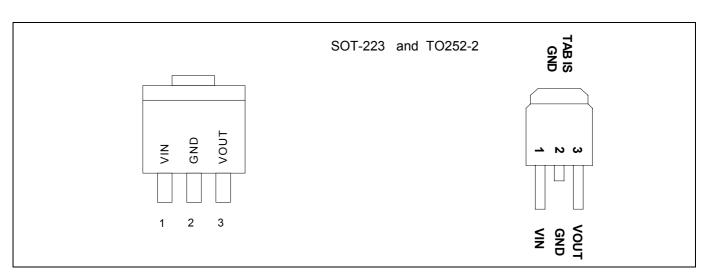
GENERAL DESCRIPTION

The BM9164 family of a linear voltage linear regulators developed utilizing BM unique BiCMOS technology featured low quiescent current (90uA), low dropout voltage, high output voltage accuracy. The space-efficient SOT223, TO252 package is attractive for "Pocket" and "Hand Held" applications.

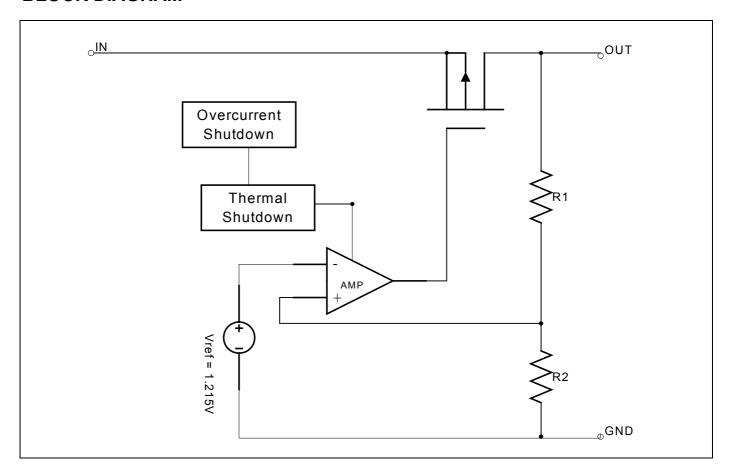
Output voltages are set at the factory and trimmed to 1.5% accuracy. Voltages from 3.3V to 5.0V are available.

These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

The BM9164 is stable with an output capacitance of $10\mu F$ or greater.


APPLICATIONS

- Battery-powered devices
- Personal communication devices
- ♦ Home electric/electronic appliances
- PC peripherals , hard-disk


FEATURES

- Very Low Dropout Voltage , <400mV when 0.8A
- Low Current Consumption: Typ. 90uA
- ♦ High Accuracy Output Voltage: +/- 1.5%
- ◆ Guaranteed 0.8A (if Vin-Vout<1700mV in SOT223)
- ◆ Output up to 0.3A if down 12V to +5V in SOT223
- ◆ Output up to 0.5A if down 12V to +5V in TO252
- ♦ Compact Package: SOT-223 and TO252
- Factory Pre-set Output Voltages
- ◆ Short Circuit Current Fold-Back
- ◆ Low Temperature Coefficient

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

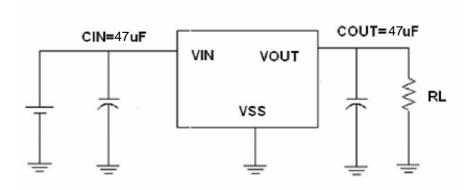
Part Number	Output Voltage	Temperature Range	Package
BM9164-5.0	5.0V	-20°C ~ +85	SOT223
BM9164-3.3	3.3V	-20°C ~ +85	SOT-223
BM9164-5.0	5.0V	-20°C ~ +85°C	TO252

ABSOLUTE MAXIMUM RATINGS

OPERATING RATINGS

Input Voltage	+18V
Output Current	1.2A
Output Voltage GND-0.3V to V _{IN} +	0.3V
ESD Classification	. B

Supply Voltage+2V	to +16V
Ambient Temperature Range (T _A)40°C	to +85°C
Junction Temperature Range40°C to	ວ +125℃


THERMAL INFORMATION

Parameter		Maximum	Unit
Thermal Resistance (⊖ _{jc})	SOT-223	160	°C/W
Internal Power Dissipation (P _D) (△T = 100°C)	SOT-223	625	mW
Maximum Junction Temperature		150	$^{\circ}\mathbb{C}$
Maximum Lead Temperature (10 Sec)		300	°C

^{*}With Junction sink capable of twice times of $\Theta_{\rm jc}$

Caution: Stress above the listed absolute rating may cause permanent damage to the device.

Typical Application Circuit

ELECTRICAL CHARACTERISTICS

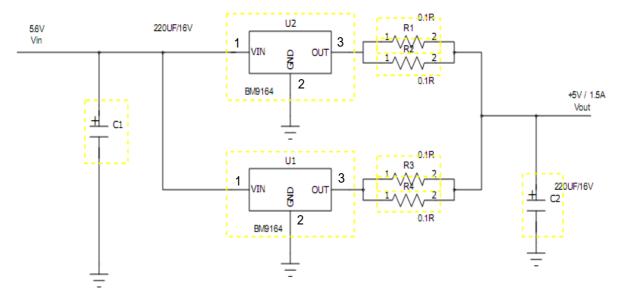
 T_A = +25 $^{\circ}$ C; unless otherwise noted

B		Symbol Test Conditions		BM9164			
Parameter	Symbol			Min.	Тур.	Max.	Unit
Input Voltage	V _{IN}			+2		+18	V
Output Voltage Accuracy	V _{OUT}	I _O = 1mA to 1.5A		-1.5		1.5	%
Dropout Voltage	$V_{DROPOUT}$	V _{OUT} =V _{O(NOM)} -4%,	lout=0.8A		400		mV
			lout=600mA			300	
			lout=100mA			200	mV
Output Current	Io	V _{OUT} > 1.5V			800		mA
Current Limit	I _{LIM}	V _{OUT} > 1.5V			1200		mA
Short Circuit Current	I _{SC}	V _{OUT} < 0.4V			750	1200	mA
Quiescent Current	IQ	I _O = 0mA			90		uA
Ground Pin Current	I _{GND}	I _O = 1mA to 1A			90		uA
Line Regulation	REG _{LINE}	I _{OUT} =5mA	V _{OUT} <= 4.0V			1.5	%
			V _{OUT} > 4.0V		2		%
Load Regulation	REG _{LOAD}	I _O = 0 ~ 0.8A			0.2	1.5	%
Over Temperature Shutdown	OTS				150		$^{\circ}\mathbb{C}$
Over Temperature Hystersis	OTH				30		$^{\circ}\mathbb{C}$
V _{OUT} Temperature Coefficient	TC				30		ppm/°C
Power Supply Reject	PSRR $I_0 = 100$ mA $C_0 = 22$ µF ceram	1 400 4	f=1kHz		72		
		-	f=10kHz		60		dB
		C₀=∠∠µr ceramic	f=100kHz		45		
Output Voltage Noise	eN	f=10Hz to 100kHz	C _O =22µF		30		μ Vrms
		I _O = 10mA	C _O =47µF		20		

Note 1. V_{IN(MIN)} = V_{OUT} + V_{DROPOUT}

DETAILED DESCRIPTION

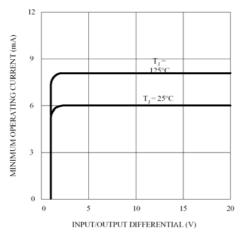
The BM9164 family of BiCMOS regulators contain a pass transistor, voltage reference, error amplifier, over-current protection, thermal shutdown, and short circuit protection.

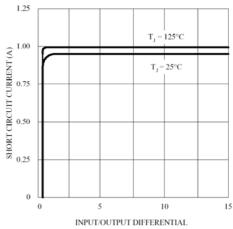

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, short output protection, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150°C, or the current exceeds 1.2A. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120°C.

The BM9164 behaves like a current source when the load reaches 1.2A. However, if the load impedance drops below 0.3Ω , the current drops back to 600mA to prevent excessive power dissipation. Normal operation is restored when the load resistance exceeds 0.75Ω .

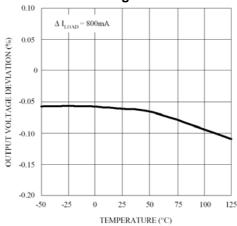
EXTERNAL CAPACITOR

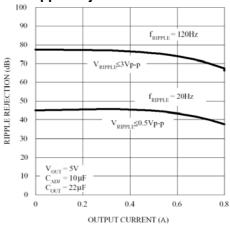
The BM9164 is stable with an output capacitor to ground of $22\mu F$ or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. Unfortunately, large value ceramic capacitors are comparatively expensive. One option is to parallel a $0.1\mu F$ ceramic capacitor with a $22\mu F$ Aluminum Electrolytic. The benefit is low ESR, high capacitance, and low overall cost.

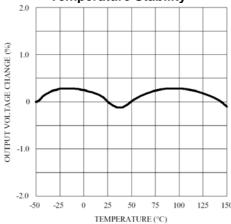

A second capacitor is recommended between the input and ground to stabilize VIN. The input capacitor should be larger than 22µF to have a beneficial effect. All capacitors should be placed in close proximity to the pins. A "quiet" ground termination is desirable.

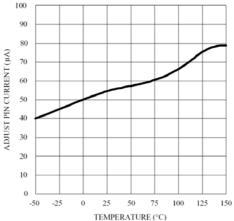

锂电降压式大电流充电典型电路

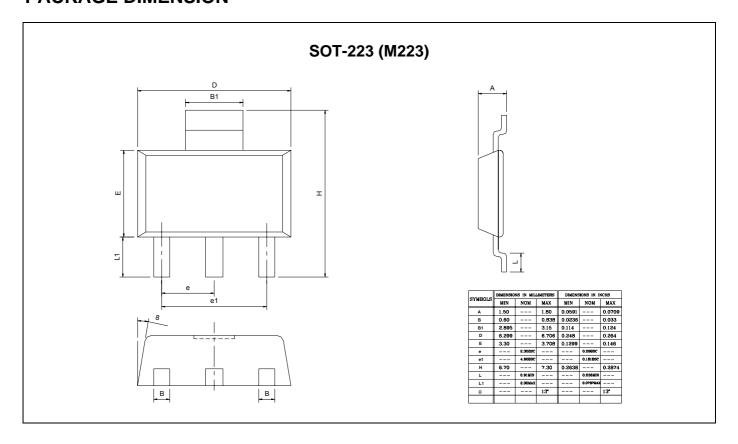
TYPICAL ELECTRICAL CHARACTERISTICS

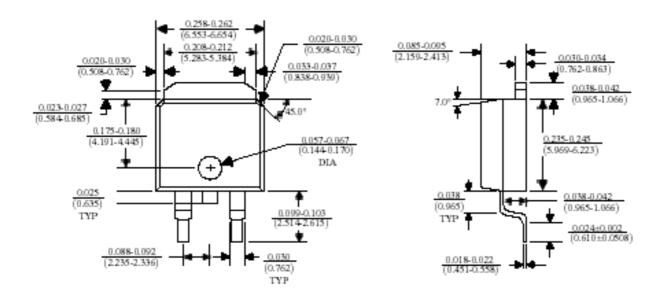

Minimum Operating Current




Load Regulation


Ripple Rejection vs. Current


Temperature Stability


GND Pin Current

PACKAGE DIMENSION

TO252-2 (DPAK)

